989 resultados para Bacterial meningitis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Acute bacterial meningitis (BM) continues to be an important cause of childhood mortality and morbidity, especially in developing countries. Prognostic scales and the identification of risk factors for adverse outcome both aid in assessing disease severity. New antimicrobial agents or adjunctive treatments - except for oral glycerol - have essentially failed to improve BM prognosis. A retrospective observational analysis found paracetamol beneficial in adult bacteraemic patients, and some experts recommend slow β-lactam infusion. We examined these treatments in a prospective, double-blind, placebo-controlled clinical trial. Patients and methods A retrospective analysis included 555 children treated for BM in 2004 in the infectious disease ward of the Paediatric Hospital of Luanda, Angola. Our prospective study randomised 723 children into four groups, to receive a combination of cefotaxime infusion or boluses every 6 hours for the first 24 hours and oral paracetamol or placebo for 48 hours. The primary endpoints were 1) death or severe neurological sequelae (SeNeSe), and 2) deafness. Results In the retrospective study, the mortality of children with blood transfusion was 23% (30 of 128) vs. without blood transfusion 39% (109 of 282; p=0.004). In the prospective study, 272 (38%) of the children died. Of those 451 surviving, 68 (15%) showed SeNeSe, and 12% (45 of 374) were deaf. Whereas no difference between treatment groups was observable in primary endpoints, the early mortality in the infusion-paracetamol group was lower, with the difference (Fisher s exact test) from the other groups at 24, 48, and 72 hours being significant (p=0.041, 0.0005, and 0.005, respectively). Prognostic factors for adverse outcomes were impaired consciousness, dyspnoea, seizures, delayed presentation, and absence of electricity at home (Simple Luanda Scale, SLS); the Bayesian Luanda Scale (BLS) also included abnormally low or high blood glucose. Conclusions New studies concerning the possible beneficial effect of blood transfusion, and concerning longer treatment with cefotaxime infusion and oral paracetamol, and a study to validate our simple prognostic scales are warranted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effectiveness of the association of dexamethasone with antibiotic therapy in pediatric patients with bacterial meningitis Objective: To evaluate the efficacy of the association of corticosteroids and the standard treatment of bacterial meningitis in pediatric patients. Methods: A systematic review of the literature was conducted through the MEDLINE database. Only randomized controlled trials comparing dexamethasone with placebo in the treatment of pediatric patients with bacterial meningitis were included. Results: Eight articles met the inclusion criteria and were selected for analysis. There were no difference in mortality (p = 0.86), and incidence of neurological (p = 0.41) and auditory (p = 0.48) sequelae between the groups. Conclusion: There are no benefits in associating corticosteroids with the standard treatment of bacterial meningitis in pediatric patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite targeted therapy, case-fatality rates and neurologic sequelae of bacterial meningitis remain unacceptably high. The poor outcome is mainly due to secondary systemic and intracranial complications. These complications seem to be both a consequence of the inflammatory response to the invading pathogen and release of bacterial components by the pathogen itself. Therefore, within the last decades, research has focused on the mechanism underlying immune regulation and the inhibition of bacterial lysis in order to identify new targets for adjuvant therapy. The scope of this article is to give an overview on current treatment strategies of bacterial meningitis, to summarize new insights on the pathophysiology of bacterial meningitis, and to give an outlook on new treatment strategies derived from experimental models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial meningitis causes persisting neurofunctional sequelae. Theoccurrence of apoptotic cell death in the hippocampal subgranular zone of the dentate gyrus characterizes the disease in patients and relates to deficits in learning and memory in corresponding experimental models. Here, we investigated why neurogenesis fails to regenerate the damage in the hippocampus associated with the persistence of neurofunctional deficits. In an infant rat model of bacterial meningitis, the capacity of hippocampal-derived cells to multiply and form neurospheres was significantly impaired comparedto that in uninfected littermates. In an in vitro model of differentiating hippocampal cells, challenges characteristic of bacterial meningitis (i.e. bacterial components, tumor necrosis factor [20 ng/mL], or growth factor deprivation) caused significantly more apoptosis in stem/progenitor cells and immature neurons than in mature neurons. These results demonstrate that bacterial meningitis injures hippocampal stem and progenitor cells, a finding that may explain the persistence of neurofunctional deficits after bacterial meningitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies have suggested that the scavenger receptor MARCO (macrophage receptor with collagenous structure) mediates activation of the immune response in bacterial infection of the central nervous system (CNS). The chemotactic G-protein-coupled receptor (GPCR) formyl-peptide-receptor like-1 (FPRL1) plays an essential role in the inflammatory responses of host defence mechanisms and neurodegenerative disorders such as Alzheimer's disease (AD). Expression of the antimicrobial peptide cathelicidin CRAMP/LL-37 is up-regulated in bacterial meningitis, but the mechanisms underlying CRAMP expression are far from clear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: The purpose was to study the emergency management of patients with suspected meningitis to identify potential areas for improvement. METHODS: All patients who underwent cerebrospinal fluid puncture at the emergency department of the University Hospital of Bern from January 31, 2004, to October 30, 2008, were included. A total of 396 patients were included in the study. For each patient, we analyzed the sequence and timing for the following management steps: first contact with medical staff, administration of the first antibiotic dose, lumbar puncture (LP), head imaging, and blood cultures. The results were analyzed in relation to clinical characteristics and the referral diagnosis on admission. RESULTS: Of the 396 patient analyzed, 15 (3.7%) had a discharge diagnosis of bacterial meningitis, 119 (30%) had nonbacterial meningitis, and 262 (66.3%) had no evidence of meningitis. Suspicion of meningitis led to earlier antibiotic therapy than suspicion of an acute cerebral event or nonacute cerebral event (P < .0001). In patients with bacterial meningitis, the average time to antibiotics was 136 minutes, with a range of 0 to 340 minutes. Most patients (60.1%) had brain imaging studies performed before LP. On the other hand, half of the patients with a referral diagnosis of meningitis (50%) received antibiotics before performance of an LP. CONCLUSIONS: Few patients with suspected meningitis received antimicrobial therapy within the first 30 minutes after arrival, but most patients with pneumococcal meningitis and typical symptoms were treated early; patients with bacterial meningitis who received treatment late had complex medical histories or atypical presentations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adverse outcome in bacterial meningitis is associated with the breakdown of the blood-brain barrier (BBB). Matrix-metalloproteinases (MMPs) facilitate this process by degradation of components of the BBB. This in turn results in acute complications of bacterial meningitis including edema formation, increased intracranial pressure and subsequent ischemia. We determined the parenchymal balance of MMP-9 and TIMP-1 (tissue inhibitor of MMP) and the structural integrity of the BBB in relation to cortical damage in an infant rat model of pneumococcal meningitis. The data demonstrate that the extent of cortical damage is significantly associated with parenchymal gelatinolytic activity and collagen type IV degradation. The increased gelatinolysis was found to be associated with a brain parenchymal imbalance of MMP-9/TIMP-1. These findings provide support to the concept that MMPs mediated disruption of the BBB contributes to the pathogenesis of bacterial meningitis and that protection of the vascular unit may have neuroprotective potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: The mortality of bacterial meningitis can reach 30%, and up to 50% of survivors suffer from persisting neurological deficits as a consequence of the disease. The incidence of neurological sequelae of bacterial meningitis has not improved over the last decade. Adjunctive therapeutic options are limited, and ongoing research into the pathophysiology of brain damage in bacterial meningitis aims at providing the scientific basis for future development of more efficient adjunctive options. RECENT FINDINGS: In a population with good access to health care, dexamethasone given before or at the time of initiation of antibiotic therapy acts beneficially in paediatric pneumococcal meningitis, but not in meningococcal meningitis. In experimental animal models, brain-derived neurotrophic factor protected against brain injury and improved hearing while melatonin, which has antioxidant properties among other effects, reduced neuronal death. Transgene technology can be used to provide new insights into the pathophysiology of the disease and to identify potential therapeutic targets. SUMMARY: Although dexamethasone improves outcome of bacterial meningitis under defined circumstances, the morbidity of bacterial meningitis still remains unacceptably high. Experimental models may help to identify new therapeutic strategies to further improve the neurological outcome in young children suffering from bacterial meningitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the protein expression of gelatinases [matrix metalloproteinase (MMP)-2 and -9] and collagenases (MMP-8 and -13) in cerebrospinal fluid (CSF) from patients with bacterial (BM, n = 17) and aseptic (AM, n = 14) meningitis. In both, MMP-8 and -9 were increased in 100% of patients, whereas MMP-13 was detectable in 53% and 82% respectively. Three patients with clinical signs of meningitis, without CSF pleocytosis, scored positive for all three MMPs. MMP-8 appeared in two isoforms, granulocyte-type [polymorphonuclear cell (PMN)] and fibroblast/macrophage (F/M) MMP-8. Analysis of kinetic changes from serial lumbar punctures showed that these MMPs are independently regulated, and correlate only partly with CSF cytosis or levels of the endogenous inhibitor, tissue inhibitor of matrix metalloproteinase-1. In vitro, T cells, peripheral blood mononuclear cells (PBMCs) and granulocytes (PMN) release MMP-8 and -9, whereas MMP-13 could be found only in the former two cell types. Using models of exogenous (n-formyl-Met-Leu-Phe, T cell receptor cross-linking) and host-derived stimuli (interleukin-2), the kinetics and the release of the MMP-8, -9 and -13 showed strong variation between these immune cells and suggest release from preformed stocks. In addition, MMP-9 is also synthesized de novo in PBMCs and T cells. In conclusion, invading immune cells contribute only partially to MMPs in CSF during meningitis, and parenchymal cells are an equally relevant source. In this context, in patients with clinical signs of meningitis, but without CSF pleocytosis, MMPs seem to be a highly sensitive marker for intrathecal inflammation. The present data support the concept that broad-spectrum enzyme inhibition targeting gelatinases and collagenases is a potential strategy for adjunctive therapy in infectious meningitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously shown that antioxidants such as a-phenyl-tert-butyl nitrone or N-acetylcysteine attenuate cortical neuronal injury in infant rats with bacterial meningitis, suggesting that oxidative alterations play an important role in this disease. However, the precise mechanism(s) by which antioxidants inhibit this injury remain(s) unclear. We therefore studied the extent and location of protein oxidation in the brain using various biochemical and immunochemical methods. In cortical parenchyma, a trend for increased protein carbonyls was not evident until 21 hours after infection and the activity of glutamine synthetase (another index of protein oxidation) remained unchanged. Consistent with these results, there was no evidence for oxidative alterations in the cortex by various immunohistochemical methods even in cortical lesions. In contrast, there was a marked increase in carbonyls, 4-hydroxynonenal protein adducts and manganese superoxide dismutase in the cerebral vasculature. Elevated lipid peroxidation was also observed in cerebrospinal fluid and occasionally in the hippocampus. All of these oxidative alterations were inhibited by treatment of infected animals with N-acetylcysteine or alpha-phenyl-tert-butyl nitrone. Because N-acetylcysteine does not readily cross the blood-brain barrier and has no effect on the loss of endogenous brain antioxidants, its neuroprotective effect is likely based on extraparenchymal action such as inhibition of vascular oxidative alterations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antioxidant treatment has previously been shown to be neuroprotective in experimental bacterial meningitis. To obtain quantitative evidence for oxidative stress in this disease, we measured the major brain antioxidants ascorbate and reduced glutathione, and the lipid peroxidation endproduct malondialdehyde in the cortex of infant rats infected with Streptococcus pneumoniae. Cortical levels of the two antioxidants were markedly decreased 22 h after infection, when animals were severely ill. Total pyridine nucleotide levels in the cortex were unaltered, suggesting that the loss of the two antioxidants was not due to cell necrosis. Bacterial meningitis was accompanied by a moderate, significant increase in cortical malondialdehyde. While treatment with either of the antioxidants alpha-phenyl-tert-butyl nitrone or N-acetylcysteine significantly inhibited this increase, only the former attenuated the loss of endogenous antioxidants. Cerebrospinal fluid bacterial titer, nitrite and nitrate levels, and myeloperoxidase activity at 18 h after infection were unaffected by antioxidant treatment, suggesting that they acted by mechanisms other than modulation of inflammation. The results demonstrate that bacterial meningitis is accompanied by oxidative stress in the brain parenchyma. Furthermore, increased cortical lipid peroxidation does not appear to be the result of parenchymal oxidative stress, because it was prevented by NAC, which had no effect on the loss of brain antioxidants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental bacterial meningitis due to Streptococcus pneumoniae in infant rats was associated with a time-dependent increase in CSF and cortical urate that was approximately 30-fold elevated at 22 h after infection compared to baseline. This increase was mirrored by a 20-fold rise in cortical xanthine oxidoreductase activity. The relative proportion of the oxidant-producing xanthine oxidase to total activity did not increase, however. Blood plasma levels of urate also increased during infection, but part of this was as a consequence of dehydration, as reflected by elevated ascorbate concentrations in the plasma. Administration of the radical scavenger alpha-phenyl-tert-butyl nitrone, previously shown to be neuroprotective in the present model, did not significantly affect either xanthine dehydrogenase or xanthine oxidase activity, and increased even further cortical accumulation of urate. Treatment with the xanthine oxidoreductase inhibitor allopurinol inhibited CSF urate levels earlier than those in blood plasma, supporting the notion that urate was produced within the brain. However, this treatment did not prevent the loss of ascorbate and reduced glutathione in the cortex and CSF. Together with data from the literature, the results strongly suggest that xanthine oxidase is not a major cause of oxidative stress in bacterial meningitis and that urate formation due to induction of xanthine oxidoreductase in the brain may in fact represent a protective response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Excitotoxic neuronal injury by action of the glutamate receptors of the N-methyl-d-aspartate (NMDA) subtype have been implicated in the pathogenesis of brain damage as a consequence of bacterial meningitis. The most potent and selective blocker of NMDA receptors containing the NR2B subunit is (R,S)-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperid inepropanol (RO 25-6981). Here we evaluated the effect of RO 25-6981 on hippocampal neuronal apoptosis in an infant rat model of meningitis due to Streptococcus pneumoniae. Animals were randomized for treatment with RO 25-6981 at a dosage of either 0.375 mg (15 mg/kg; n = 28) or 3.75 mg (150 mg/kg; n = 15) every 3 h or an equal volume of sterile saline (250 microl; n = 40) starting at 12 h after infection. Eighteen hours after infection, animals were assessed clinically and seizures were observed for a period of 2 h. At 24 h after infection animals were sacrificed and brains were examined for apoptotic injury to the dentate granule cell layer of the hippocampus. RESULTS: Treatment with RO 25-6981 had no effect on clinical scores, but the incidence of seizures was reduced (P < 0.05 for all RO 25-6981 treated animals combined). The extent of apoptosis was not affected by low or high doses of RO 25-6981. Number of apoptotic cells (median [range]) was 12.76 [3.16-25.3] in animals treated with low dose RO 25-6981 (control animals 13.8 [2.60-31.8]; (P = NS) and 9.8 [1.7-27.3] (controls: 10.5 [2.4-21.75]) in animals treated with high dose RO 25-6981 (P = NS). CONCLUSIONS: Treatment with a highly selective blocker of NMDA receptors containing the NR2B subunit failed to protect hippocampal neurons from injury in this model of pneumococcal meningitis, while it had some beneficial effect on the incidence of seizures.